Potential of the Aqueous Ag-Ag₂SO₄ Electrode in 1 m Na₂SO₄ in Contact with 1 m H₂SO₄ at up to 473 K and 975 bar

B. A. Bilal and E. Müller

Hahn-Meitner-Institut, Glienicker Straße 100, D-14109 Berlin

Z. Naturforsch. 49a, 943-945 (1994); received August 12, 1994

The potential of the $Ag-Ag_2SO_4$ electrode in 1 m Na_2SO_4 solution in contact with 1 m H_2SO_4 solution has been determined up to 473 K and 975 bar. The potential of the electrode in aqueous 1 m Na_2SO_4 solution without accounting for any diffusion was calculated under the same p and T conditions taking the formation of $NaSO_4^-$ into account. Small differencies ($\leq 2\%$) have been found in comparison with the values given previously by the authors [1] assuming a complete dissociation of Na_2SO_4 .

1. Introduction

The aqueous Ag-Ag₂SO₄ electrode is used as a reference in high temperature - high pressure cyclic voltammetric studies of current/voltage curves obtained during electrolysis, as well as potential assisted photoelectrolysis of aqueous sulfuric acid solution (up to 1 m) using semiconductor electrodes. At room temperature, Hg-Hg₂Cl₂, Hg-HgSO₄ and Ag-AgCl reference electrodes have been used. At high temperatures, however, use of Cl⁻ containing electrodes is restricted due to the increasing diffusion of Cl⁻ into the outer solution and its possible anodic oxidation, which leads to various alterations of the surface of the semiconductor electrodes. The interpretation of the voltammograms becomes very difficult or even impossible. In addition, the use of Hg containing electrodes at high temperatures is obviously prohibited because of the evaporation of Hg.

In [1] we have studied the thermodynamics of the Ag-Ag₂SO₄ electrode up to 473 K and the corresponding saturation pressures. The standard potential of the electrode, as well as its potential in aqueous Na₂SO₄ solutions of different molalities were determined.

To prevent the liquid junction potential (ΔE_j) , which can not be calculated due to lacking values of the ion mobilities at high temperatures and pressures, it should be advantageous to use sulfuric acid as inner solution of the $Ag-Ag_2SO_4$ electrode which has the same molality as the one electrolyzed. On the other hand, we have recently found [1] that no constant

Reprint requests to Prof. Dr. B. A. Bilal.

standard potential $E^0(T)$ of the electrode was obtained at $\mathrm{H_2SO_4}$ molality > 0.0075 m due to the dissolution of the $\mathrm{Ag_2SO_4}$ with increasing temperatures. This concentration is too low for a considerable electrolyte conductance. Higher $\mathrm{H_2SO_4}$ concentrations of 0.5–1.0 m are usually needed.

The diffussion potential ΔE_j between sulfuric acid and aqueous Na₂SO₄ solution of the same concentration is mainly determined by the diffusion of H⁺ and Na⁺ ions. However, also diffusion of SO₄⁻ arises with decreasing temperature due to the different formation degrees of NaSO₄⁻ and HSO₄⁻. We have, therefore, experimentally determined the potential of the Ag-Ag₂SO₄ electrode up to 473 K and 975 bar in the cell

 $Ag-Ag_2SO_4/1 \text{ m Na}_2SO_4//1 \text{ m H}_2SO_4/H_2(p)-Pt$.

2. Experimental

The potentiometric measurements were carried out in the high temperature – high pressure cell described in [2]. The air in the autoclave was replaced by pure Hydrogen (99.999%) at 31.5 bar and 298 K. Further initial pressures at 298 K were obtained by pressurizing with Argon to 80, 130, 185, 236, 287, 336, 382, 485, and 590 bar. These pressures increased with the temperature to 60 and 146, 231, 326, 428, 528, 632, 732, 863, and 975 bar at 473 K. To obtain the hydrogen pressure $p_{\rm H_2}(T)$, only Argon was pressurized at 298 K in the autoclave, containing the same solutions, to the above initial pressures minus 31.5 bar, and the temperature was increased to 473 K. $p_{\rm H_2}(T)$ resulted by subtraction of the two corresponding pressures.

0932-0784 / 94 / 1000-0943 \$ 06.00 © - Verlag der Zeitschrift für Naturforschung, D-72027 Tübingen

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Table 1. Molality, activity coefficient (mean ionic activity coefficient) and activity of H $^+$ in 1 m H $_2$ SO $_4$ and the potentials E_1 , E_2 , E_3 , and ΔE_j at different temperatures and pressures.

$\sum p$ (bar)	m _{H+} (m)	γ_{\pm}	$a_{\rm H^+}$ (m)	E_1 (mV)	E_3 (mV)	E_2 (mV)	ΔE_j (mV)
(bai)	(111)				(111 🗸)	(111 🗸)	(111 V)
				98 K			
100	1.218	0.298	0.363	772.0	-70.3	701.7	26.0
200 300	1.230 1.247	0.296 0.295	0.364 0.368	776.0 779.5	-70.2 -70.0	705.8 709.5	30.1 33.8
400	1.258	0.293	0.308	784.0	-69.8	714.2	38.5
500	1.270	0.292	0.371	789.0	-69.8	719.2	43.5
600	1.289	0.291	0.375	794.5	-69.5	725.0	49.3
700	1.300	0.290	0.377	801.0	-69.3	731.7	56.0
800	1.311	0.289	0.379	808.0	-69.2	738.8	63.1
900 975	1.326 1.345	0.288 0.287	0.382 0.386	817.1 825.0	-69.0 -69.9	748.0 756.1	72.3 80.4
913	1.545	0.207		823.0 23 K	-09.9	730.1	60.4
100	1.137	0.265	0.301	755.0	-82.2	672.8	34.6
200	1.145	0.261	0.301	757.5	-82.2 -82.5	675.0	36.8
300	1.152	0.259	0.298	761.5	-82.6	678.8	40.7
400	1.159	0.256	0.297	766.0	-82.7	683.3	45.1
500	1.167	0.253	0.296	771.0	-82.8	688.2	50.0
600	1.175	0.251	0.295	776.5	-82.9	693.6	55.4
700 800	1.183 1.191	0.249 0.247	0.294 0.294	783.0 790.0	$-83.0 \\ -83.0$	700.0 707.0	61.8 68.8
900	1.200	0.247	0.294	798.0	-83.0 -83.1	714.9	76.7
975	1.205	0.243	0.293	804.0	-83.1	720.9	82.7
			34	48 K			
100	1.067	0.260	0.277	732.0	-92.1	639.9	43.2
200	1.071	0.257	0.275	735.5	-92.3	643.2	46.5
300	1.075	0.254	0.273	739.0	-92.5	646.5	49.8
400 500	1.080 1.085	0.251 0.248	0.271 0.269	743.5 747.5	-92.7 -92.9	650.8 654.6	54.1 57.9
600	1.090	0.246	0.268	753.0	-93.3	659.7	63.0
700	1.095	0.243	0.266	759.0	-93.3	665.7	69.0
800	1.101	0.240	0.264	755.5	-93.5	671.9	75.2
900 975	1.106	0.238 0.236	0.263	773.0 780.0	-93.7 -93.8	679.3 686.2	82.6 89.5
913	1.111	0.230		780.0 73 K	-93.8	080.2	69.3
100	1.036	0.240	0.249	710.0	-103.1	606.9	60.7
200	1.039	0.240	0.249	712.3	-103.1 -103.5	608.8	62.6
300	1.042	0.234	0.244	715.3	-103.8	611.5	65.3
400	1.046	0.230	0.240	719.0	-104.3	614.7	68.5
500	1.049	0.228	0.239	723.3	-104.5	618.8	72.6
600 700	1.052 1.056	0.225 0.222	0.237	728.0 734.0	-104.8 -105.1	623.2 628.9	77.0 82.7
700	1.030	0.222		98 K	-103.1	020.9	02.7
100	1.019	0.210	0.214	690.0	-115.7	574.3	82.0
200	1.021	0.210			-115.7 -116.2	576.8	84.5
300	1.023	0.204	0.208	696.0	-116.6	579.4	87.1
400	1.026	0.200	0.205	699.7	-117.2	582.5	90.2
500	1.028	0.197	0.202	704.0	-117.7	586.5	94.2
600 700	1.030 1.033	0.194 0.191	0.200	709.0	-118.1	590.9	98.6
700	1.033	0.191	0.197	715.0	-118.6	596.4	104.1
100	1.010	0.190	0.192	23 K 681.0	-127.5	553.5	124.8
200	1.011	0.186	0.132	682.0	-127.3	553.9	125.2
300	1.013	0.182	0.184	685.0	-128.9	556.1	127.4
400	1.015	0.178	0.180	688.0	-129.7	558.3	129.6
500 600	1.017 1.019	0.174 0.171	0.177 0.174	692.5 697.5	-130.4 -130.9	562.1 566.5	133.4 137.8
		111/1	11 1 / 4	D4 / 3	_ 13119		

Table 1 (continued)

$\sum p$ (bar)	<i>m</i> _H + (m)	γ_{\pm}	a _{H +} (m)	E_1 (mV)	E_3 (mV)	$\frac{E_2}{(mV)}$	ΔE_j (mV)
			4	48 K			
100	1.006	0.162	0.163	668.0	-141.3	526.7	163.4
200	1.007	0.158	0.159	670.0	-142.3	527.7	164.4
300	1.008	0.154	0.155	672.0	-143.3	528.7	165.4
400	1.009	0.150	0.151	675.0	-144.4	530.6	167.3
500	1.011	0.146	0.148	678.0	-145.3	432.7	169.4
			4	73 K			
100	1.003	0.134	0.134	640.5	-156.7	483.8	192.0
200	1.004	0.12	0.130	642.1	-158.1	484.0	192.1
300	1.005	0.125	0.126	643.0	-158.5	484.6	192.8
400	1.006	0.121	0.122	644.1	-159.0	485.1	193.3

3. Results and Discussion

The potential E_1 of the cell (1) is due to the reaction

$$H_2 + Ag_2SO_4 \Leftrightarrow 2Ag + 2H^+ + SO_4^{2-};$$
 (1)

$$E_1 = E_1^0 - RT/2F \ln \left[\left\{ (a_{H^+})^2 a_{SO_2^2-} \right\} / p_{H_2} \right] + \Delta E_i$$
, (1 a)

and equals the potential difference $(E_2 - E_3)$ between the two half cells

$$Ag_2SO_4 + 2e^- \Leftrightarrow 2Ag + SO_4^{2-}$$
, (2)

$$E_2 = E_2^0 - RT/2F \ln a_{SO_4^2} + \Delta E_j$$
, (2a)

and

$$H_2 \Leftrightarrow 2H^+ + 2e^-,$$
 (3)

$$E_3 = RT/2F \ln \left[(a_{H^+})^2 / p_{H_2} \right],$$
 (3 a)

$$E_2 = E_1 + E_3, (4)$$

where a denotes the activity. To obtain $E_2(p, T)$, $a_{H^+}(p, T)$ was calculated according to

$$a_{H^{+}} = m_{H^{+}} \gamma_{H^{+}} = (1 + \alpha) m^{0} \gamma_{H^{+}},$$
 (5)

where $m_{\rm H^+}$ and $\gamma_{\rm H^+}$ denote the actual molality and the activity coefficient of the hydrogen ion, $\alpha =$ the dissociation degree of HSO₄⁻ and m^0 = the stoichiometric molality of H₂SO₄. Only the formation of HSO₄⁻ is considered in (5), since, according to Oscarson et al. [3], the formation of undissociated H₂SO₄ takes first place at $T \ge 573$ K. $\gamma_{\rm H^+}$ was taken as the mean ionic activity coefficient γ_{\pm} of H₂SO₄. γ_{\pm} and α have been calculated previously by the authors [4] up to 473 K and 975 bar using the data given by Holmes and Mesmer [5] up to 473 K along with the corresponding saturation pressure and the values of the apparent formation constant of HSO₄⁻ determined by the authors [6] up to 473 K and 975 bar. Table 1 shows the

Table 2. Q and α of NaSO $_4^-$, γ_\pm , sulfate activity $a_{\rm SO_4^{2-}}$ and the potential of the Ag-Ag $_2$ SO $_4$ electrode $E_{\rm Ag-Ag}_2$ SO $_4$ in aqueous 1 m Na $_2$ SO $_4$ solution up to 473 K.

T (K)	Q (m^{-1})	α	γ_{\pm}	$a_{SO_4^2}$ (m)	$E_{Ag-Ag_2SO_4} $ (mV)
298	0.351	0.635	0.270	0.171	675.7
323	0.366	0.627	0.280	0.175	638.2
348	0.382	0.618	0.272	0.168	596.7
373	0.413	0.602	0.254	0.153	546.2
398	0.441	0.588	0.230	0.135	492.3
423	0.551	0.541	0.209	0.113	428.7
448	0.742	0.477	0.191	0.091	363.3
473	1.171	0.382	0.178	0.068	291.8

molality, activity coefficient (mean ionic activity coefficient) and activity of H^+ in 1 m H_2SO_4 solution, as well as the potentials E_1 , E_3 , and E_2 and ΔE_j at different T, p.

The calculation of the potential of the Ag-Ag₂SO₄ half cell in aqueous Na₂SO₄ solutions of different molalities given in [1] (without accounting for any diffusion term), has been carried out using the stoichiometric activity coefficient γ of Na₂SO₄ given in [7, 8], which is based on complete dissociation. The formation of NaSO₄ was neglected, since Pabalan and Pitzer [9] found a good agreement between the experimental solubility data of Na₂SO₄ in water up to 300 °C and those calculated by them without an explicit accounting for Na₂SO₄ formation. However, the thermodynamic formation constants of NaSO₄ reported in [3] indicate that appreciable formation of NaSO₄ at least at high temperatures takes place. The potential of the Ag-Ag₂SO₄ electrode in 1 m Na₂SO₄

solution was therefore recalculated taking the dissociation degree α and the mean ionic activity coefficient γ_{\pm} of Na₂SO₄ as function of T into account. According to the data given by Helgeson, Kirkham and Flowers [10] for aqueous Na₂SO₄, the pressure dependence of Q, α , and γ_{\pm} is negligible up to 1 kbar at T up to 473 K. It remained, therefore unconsidered.

The apparent formation constants of NaSO₄⁻ in 1 m Na₂SO₄ were calculated using the log K^0 values given in [3] and the Debye-Hückel-Term (DHT) due to

$$\log Q = \log K^0 - 4 A \gamma I^{1/2} / (1 + B \gamma \, \mathring{a} \, I^{1/2}), \quad (6)$$

to obtain α according to

$$Q = (1 - \alpha)/m^0 \alpha (1 + \alpha). \tag{7}$$

Since the real ionic strength I results from

$$I = m^0 (1 + 2\alpha), \tag{8}$$

 α has been iteratively determined by fitting (6), (7), and (8). The mean ionic activity coefficient γ_{\pm} was then calculated according to

$$\gamma_{+} = [4\gamma^{3}/\alpha(1+\alpha)^{2}]^{1/3} . \tag{9}$$

Table 2 shows Q and α of NaSO₄⁻, the mean ionic activity and sulfate activity of 1 m Na₂SO₄ solution, as well as the potential of the Ag-Ag₂SO₄ electrode in it up to 473 K.

The recalculated values are in the whole not very different from those given in [1] due to the weak interaction between Na⁺ and SO_4^{2-} . They are higher by about 0.4% at 298 K to about 2% at 473 K. This is due to the increase of γ_{\pm} with respect to γ on decreasing α .

- [1] B. A. Bilal and E. Müller, Z. Naturforsch. 48a, 743
- [2] P. Becker and B. A. Bilal, Fresenius Z. Anal. Chem. 317, 118 (1984).
- [3] J. I. Oscarson, R. Izatt, P. R. Brown, Z. Pawlak, S. E. Gillespie, and J. J. Christensen, J. Solution Chem. 17, 841 (1988).
- [4] B. A. Bilal and E. Müller, Z. Naturforsch. 49a, 939 (1994).
- [5] H. F. Holmes and R. E. Mesmer, J. Chem. Thermodyn. 24, 317 (1992).
- [6] B. A. Bilal and E. Müller, Z. Naturforsch. 48a, 1073 (1993).
- [7] P. S. Z. Rogers and K. S. Pitzer, J. Phys. Chem. 85, 2886 (1981).
- [8] H. F. Holmes and R. E. Mesmer, J. Solution Chem. 15, 495 (1986).
- [9] R. T. Papalan and K. S. Pitzer, Geochim. Cosmochim. Acta 52, 2393 (1988).
- [10] H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, Amer. J. Science 281, 1241 (1981).